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A B S T R A C T

Archaeologists now routinely use summed radiocarbon dates as a measure of past population size, yet few have
coupled these measures to theoretical expectations about social organization. To help move the ‘dates as data’
approach from description to explanation, this paper proposes a new integrative theory and method for quan-
titative analyses of radiocarbon summed probability distributions (SPDs) in space. We present this new approach
to ‘SPDs in space’ with a case study of 3571 geo-referenced radiocarbon dates fromWyoming, USA. We develop a
SPD for the Holocene in Wyoming, then analyze the spatial distribution of the SPD as a function of time using a
standard nearest-neighbor statistic. We compare population growth and decline throughout the Holocene with
expectations for different Ideal Distribution Models from population ecology that predict the relationship be-
tween habitat quality and population density. Results suggest that populations in Wyoming were initially
clustered and then became increasingly dispersed through the course of the Holocene. These results suggest that
Allee-like benefits to aggregation, rather than ideal free-driven dispersion patterns, explain settlement decisions
in response to growing populations. Our approach is a first step in constructing a method and theory for de-
scribing relationships between social organization and population growth trends derived from archaeological
radiocarbon time-series.

1. Introduction

Statistical analyses of large radiocarbon datasets are a powerful
approach to investigate prehistoric population growth in different re-
gions of the world (Shennan and Edinborough, 2007; Peros et al., 2010;
Kelly et al., 2013; Shennan et al., 2013; Timpson et al., 2014; Wang
et al., 2014; Chaput et al., 2015; Tallavaara et al., 2015; Williams et al.,
2015a; Chaput and Gajewski, 2016; Crema et al., 2016; Goldberg et al.,
2016; Perez et al., 2016; Zahid et al., 2016). Critical appraisals of these
analyses have focused on various external biases to establish the tech-
nique of using the summed probability distribution (SPD) of a set of
radiocarbon dates as a population proxy (Surovell and Brantingham,
2007; Armit et al., 2013; Bamforth and Grund, 2012; Williams, 2012;
Contreras and Meadows, 2014; Brown, 2015; Torfing, 2015; Freeman
et al., 2017). Taphonomic bias (Surovell et al., 2009; Peros et al., 2010;
Williams, 2012; Bluhm and Surovell, 2018), discovery bias (Williams,
2012; Shennan et al., 2013; Rhode et al., 2014; Timpson et al., 2014;
Crema et al., 2017), and calibration bias (Shennan et al., 2013; Timpson

et al., 2014; Brown, 2015; Carleton et al., 2018) have been examined.
Treatment of these biases and comparisons with independent proxies of
prehistoric population growth (e.g., Downey et al., 2014; Chaput and
Gajewski, 2016; Zahid et al., 2016) have transformed the ‘dates as data’
approach (Rick, 1987) into a robust method for paleodemographic re-
search.

Developing a theoretical framework for using statistical analyses of
radiocarbon data to help understand human behavior and cultural
evolution remains challenging. Fluctuations in SPDs are interpreted as
changes in population size but may also be sensitive to changes in social
organization (Crombé and Robinson, 2014; Naudinot et al., 2014) and
energy consumption (Freeman et al., 2018). Thus, SPDs may provide a
means to study social and ecological processes affecting prehistoric
human populations. We demonstrate the use of radiocarbon data for
understanding prehistoric population dynamics by performing a spa-
tiotemporal analysis of the radiocarbon record to measure the spatial
distribution of Holocene populations in Wyoming as a function of time.

Our analysis of the spatial distribution of the prehistoric population
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of Wyoming is motivated by recent results from Zahid et al. (2016).
These authors measure the long-term population growth rate of for-
agers dwelling in Wyoming and Colorado during the early-middle Ho-
locene, showing that this long-term growth rate is comparable to con-
temporaneous populations in continental Europe, North America and
Australia; in continental Europe the population had transitioned to
agriculture. The comparable long-term growth rates measured world-
wide indicate that global climate or factors intrinsic to the species
regulated the growth of human populations during much of the Holo-
cene (Zahid et al., 2016). Bettinger (2016) suggests that one such factor
may be human specific behavior patterns governing spatial organiza-
tion. He proposes that the results of Zahid et al. (2016) may be inter-
preted within the framework of the Ideal Free Distribution (IFD)
(Fretwell and Lucas, 1969) model from population ecology.

The IFD model describes the relationship between habitat selection,
habitat suitability, and population growth in terms of negative density
dependence. The first individuals in an area occupy the most suitable
habitats, but as habitat suitability declines with population growth,
individuals bud off and populate less productive unoccupied habitats.
The population growth rate of 0.03–0.05% reported by Zahid et al.
(2016) for both foragers and farmers worldwide during much of the
early-middle Holocene might reflect limits on how fast a regional car-
rying capacity equilibrium “can be reached through the reshuffling of
population between environments without disrupting social ties”
(Bettinger, 2016, 814). Here we test this hypothesis by examining the
spatial distribution of the prehistoric population of Wyoming inferred
from the radiocarbon record.

Radiocarbon data have been analyzed using various geospatial
statistical methods (Crema et al., 2010, 2017; Onkamo et al., 2012;

Bevan et al., 2013; Williams et al., 2013, 2015a; Chaput et al., 2015;
Park et al., 2017). These types of analyses may provide a means to
investigate the impact of diachronic changes in social organization and
land use on the production of radiocarbon time-series (Crombé and
Robinson, 2014; Naudinot et al., 2014). In other words, the spatial
distribution of the radiocarbon record may reflect patterns of social
organization and thus provide a means to discriminate between various
ecological models describing the spatial distribution of species.

Here we compare a spatiotemporal analysis of the radiocarbon re-
cord of Wyoming with the expected temporal evolution of a simple,
nearest-neighbor statistic for various Ideal Distribution Models (IDMs).
The use of formal theory from population ecology enables predictions
for different kinds of spatial dynamics and their implication for pre-
historic human population change. We propose that this approach of
analyzing “SPDs in space” provides a means for understanding pre-
historic transitions to competitive territorial systems and cooperative
economies of scale.

2. Data and methods

Our parent sample is comprised of ca. 4715 radiocarbon dates from
the state of Wyoming, acquired mostly from grey-literature cultural
resource management reports and accessed via the WYCRO online da-
tabase of the Wyoming State Historic Preservation Office Wyoming
Cultural Resource Information System. Each radiocarbon date has its
own point provenience, which is necessary for the spatial analysis.
Spatial distribution of the radiocarbon dates is shown in Fig. 1. We
correct for oversampling bias by combining multiple uncalibrated dates
from the same site with differences <100 years by taking the error-

Fig. 1. Locations of all archaeological radiocarbon dates in the state of Wyoming (n=4576), plotted on a digital elevation model. Courtesy of R. Hillman, Wyoming
SHPO.
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weighted averaged in a pairwise manner starting with the smallest
difference first. We remove dates with uncertainties >200 years as they
are susceptible to systematic errors (Williams, 2012). This selection
criteria yields 3571 dates for our analysis. Fig. 2 shows the distribution
of uncalibrated dates and errors.

We calculate the SPD of the radiocarbon data by calibrating each
date using the IntCal13 radiocarbon age calibration curve (Reimer
et al., 2013). The error in each 14C measurement is translated into a
probability distribution of calibrated dates. We sum the probability
distribution of the 3571 individual dates to produce the SPD. Each date
is equally weighted in the sum.

The uncertainties in the SPD are determined from bootstrapping the
data and account for observational, sampling and calibration un-
certainties. We randomly sample, with replacement, 3571 dates from
our analyzed sample to produce an SPD. We do this 10,000 times to
derive the distribution's 68 and 95% confidence intervals.

We apply the taphonomic correction derived by Surovell et al.
(2009):

= × +N t t( ) 5.726442 10 ( 2176.4) .6 1.3925309 (1)

Here N t( ) is assumed to be constant and declines as a function of time t,
given in units of calibrated years before present, due to taphonomic
loss. Thus, we correct the SPD at each calibrated year by dividing by
N t( ). We apply this correction only to consistently compare the growth
rate we measure from the data with results from Zahid et al. (2016).
The spatial analysis is completely independent of the taphonomic cor-
rection, as the taphonomic correction only affects the magnitude of the
SPD, not the spatial coordinates of individual points.

We perform a clustering analysis by calculating the Clark-Evans
(Clark and Evans, 1954) nearest neighbor statistic (NNS), R. The sta-
tistic is calculated by measuring the mean of the distance of each point
in the sample to its nearest neighbor and comparing against the ex-
pectation for a randomly distributed sample population. Clark and
Evans (1954) show that for a random distribution, the NNS value is
equal to 1/(2 ) where ρ is the population density. An =R 1 value
corresponds to a random spatial distribution. Values <1 and >1 corre-
spond to clustered and dispersed spatial distributions, respectively. The
method of Clark and Evans (1954) is often applied in ecology where the
spatial distribution of a sample is measured over a grid of fixed area and
thus the density of the population, ρ, is straightforward to calculate
(Perry et al., 2006; Velázquez et al., 2016).

A standard Clark-Evans analysis is not possible in this study because
the data come from heterogeneous sources and thus the survey
boundary is not well defined. We analyze radiocarbon dates within the
modern borders of Wyoming but only a small fraction of the state has
been surveyed for radiocarbon data. Without an accurate estimate of
the survey area, we are unable to estimate the population density and

thus can not analytically calculate the R value for a randomly dis-
tributed population to compare against. In this analysis, we empirically
derive the random distribution. We note that while edge effects pose
problems for second-order spatial point pattern analyses such as k-
means clustering, first-order nearest neighbor statistics are less sensitive
(Velázquez et al., 2016).

We apply a modified Clark-Evans nearest neighbor statistic calcu-
lated using code we developed in the programming language IDL. The
modified statistic uses the empirical distribution of the data to derive
the null hypothesis of the random distribution. We calculate NNS for
the data as =r r N¯ /A i where ri is the distance to nearest neighbor for
radiocarbon date i; i goes from 1 to N where N is the number of dates in
the sample.

To derive the null hypothesis, we assign a new spatial coordinate to
each radiocarbon date by randomly drawing from the spatial distribu-
tion of all radiocarbon dates in the sample. Thus, the data set from
which we derive the null hypothesis is composed of the same radio-
carbon dates, but a new spatial coordinate which is randomly taken
from the full distribution of spatial coordinates. In other words, we
shuffle the spatial coordinates associated with each radiocarbon date by
randomly drawing from the distribution of spatial coordinates in the
sample. This procedure assumes that spatial distribution of the radio-
carbon data is uncorrelated across the large timespan we analyze. We
calculate the NNS of the randomly shuffled data in the same way as
before; =r r N¯ /E j where j now goes from 1 to N. The Clark-Evans

=R r r¯ / ¯A E.
We calculate R in bins of 500 years. Due to observational and ca-

libration uncertainties, a measured 14C date corresponds to a prob-
ability distribution of calibrated dates. We adopt the most probable date
for each data point in our sample when binning the data. We perform
the calculation in 50 year steps, thus there is a 450 year overlap be-
tween adjacent bins. When randomly shuffling the spatial coordinates,
we shuffle the whole data set prior to binning. This approach explicitly
assumes that the spatial coordinates are uncorrelated across the data
set, thus random reshuffling of the spatial coordinates provides a means
to calculate r̄E. We calculate uncertainties by bootstrapping; i.e., we
calculate R 10,000 times with a different random shuffle when calcu-
lating r̄E.

We caution against over-interpreting the absolute R values, which
we expect to be generally clustered independent of internal social dy-
namics due to the basic clustering effects of physiography and habitat
constraints. As the digital elevation model in Fig. 1 shows, the topo-
graphic variability of Wyoming might generate biases for clustering in
more lowland locations. However, as Fig. 1 highlights, the majority of
our data comes from lowland locations, which means we have less
potential for biases than if we had larger amounts of data points from
upland mountainous locations. Despite cautioning against over-

Fig. 2. Histogram of (A) uncalibrated dates analyzed in this work and (B) their corresponding errors.
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interpretation of the absolute R values, we do consider relative changes
in the R value to be robust. Thus, directional trends may be interpreted
within the framework we present.

3. Results: the size and spatial distribution of the prehistoric
population

Fig. 3A shows the SPD for the data set over the past 13,000 years.
For the period between 13000 and 6000 cal BP, the Wyoming radio-
carbon record shows long term exponential growth as indicated by
linear growth in the SPD when plotted on a log-linear scale. This long-
term trend is similar to results reported in Zahid et al. (2016) and is
expected since the data analyzed in this study significantly overlaps
with the Zahid et al. (2016) sample.

We measure a long-term growth rate of ±0.031 0.012% for the po-
pulation of Wyoming between 13000 and 6000 cal BP by fitting a linear
model to the logarithm of the SPD as a function of time. The error bars
are bootstrapped. This long-term rate of growth is consistent ( 1 )
with the rate reported in Zahid et al. (2016) for Wyoming and Colorado
over the same period. This growth rate corresponds to a doubling of the
population every 2000 years. From 6000 to 2000 cal BP the SPD
shows a flattening followed by a decline. This is followed by a rapid
increase in the SPD around 2000 cal BP and a rapid decline starting

1300 cal BP.
R values for the past 11000 years in Wyoming are plotted in Fig. 3B.

The results indicate statistically robust deviations from random dis-
tributions (R=1). The first-order trend from 11000 to 9000 cal BP is
one of increasing clustering. From 9000 to 8000 cal BP there is a brief
trend back to more dispersed distributions. This brief period of in-
creased dispersions coincided with the first major climate change event
during the Holocene (Shuman and Marsicek, 2016), with massive
droughts in lowland regions leading to greater focus on upland

settlements in richer and more diverse ecosystems (Kelly et al., 2013).
At 8000 cal BP there is a clear directional change in the first-order trend
of R values. From 8000 cal BP to present there is an overall increase
towards a dispersed distribution. Interestingly, despite this overall in-
crease towards more dispersed distributions, the period of greatest
population clustering occurred from 8000 to 5500 cal BP, which coin-
cided with the rapid growth of populations identified in the Zahid et al.
(2016) paper. Increasing dispersion of populations after 5500 cal BP
coincides with the amelioration of environments after the Holocene
thermal maximum (Shuman and Marsicek, 2016). It is also interesting
that this pattern of increasing dispersion continues throughout the
period of the mid-Holocene population plateau, as well as late Holocene
population increases and declines (Fig. 3).

Fig. 4 shows the Clark-Evans R value as a function of the SPD. We
interpret this figure as a measure of population clustering as a function
of population size. This plot helps us further understand how spatial
organization and population growth are directly related. At small po-
pulation sizes, the R value indicates that the population is consistent
with a random distribution. As populations began to grow, they were
initially clustered, but after a brief period they continued to trend to-
wards being dispersed across the landscape.

We interpret these results with the aid of models from population
ecology. We derive a set of simple expectations for the R value as a
function of population size (Fig. 6) for various ecological models
(Fig. 5) to compare with Fig. 3.

4. Discussion: linking spatiotemporal analysis of radiocarbon data
to population distribution models

4.1. Spatial analysis of radiocarbon SPDs

As mentioned above, we still lack an understanding of how different

Fig. 3. (A) Summed probability distribution of the
radiocarbon record for Wyoming plotted as a func-
tion of cal. BP. for the last 13,000 years. (B) Clark-
Evans R calculated in bins of 500 years stepped by 50
years over 11,000 years. Red line is the mean of
10,000 realizations with grey and black representing
the 68% and 95% confidence intervals, respectively.
We do not display the R value before 11,000 Cal BP
because the small sample size and large un-
certainties. We boxcar smooth the results in (A) and
(B) by 500 years. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the Web version of this article.)
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forms of social organization and mobility might impact radiocarbon
date production. SPDs are often projected onto regions without con-
sidering either (a) the diachronic variability of land use within that
region, or (b) the impacts of emigration or immigration between dif-
ferent regions.

Recent work has made progress using geospatial statistical techni-
ques to better understand SPDs. Williams et al. (2013, 2015a, b) use k-
means analysis to understand the diachronic variability in spatial
clustering and to test hypotheses related to human colonization pro-
cesses (Williams et al., 2015b), adaptive refugia (Williams et al., 2013),
and the development of complex societies (Williams et al., 2015a) in
Australia. Chaput et al. (2015) use kernel density analyses to under-
stand the diachronic distribution of human populations across North
America throughout the Holocene. Both of these methods focus on the
second-order characteristics of spatial point processes and intensities
(Bevan et al., 2013), which assume that clustering or cluster member-
ship is already known. First-order analyses, on the other hand, seek to
determine whether or not spatial clustering exists. Bevan et al. (2013,
31) note how “it is difficult, and often entirely misleading, to consider
second-order effects without properly accounting for first-order ef-
fects”. If SPDs are themselves first-order indicators of human popula-
tion and occupation dynamics (Williams, 2012), then it might be pro-
ductive to use simpler and less sophisticated spatial analyses that take
first-order characteristics into account, before moving on to under-
standing cluster membership or spatial intensities.

The NNS (Clark and Evans, 1954) is one of the simplest tests
available to determine spatial clustering of sites or populations. Conolly
and Lake (2006, 164) note this prominence is due to it being
“straightforward to calculate” and easy to interpret. They also point out
its many limitations. For example, the greatest limitation of the NNS is
its inability to compare beyond first nearest neighbors, which makes it
ineffective for understanding multi-scalar processes (Bevan and
Conolly, 2006; Conolly and Lake, 2006). However, despite its limita-
tions, NNS is valuable for understanding general spatial dynamics, and
is robust when used with Monte Carlo simulation (Bevan et al., 2013).
While there are more sophisticated geospatial statistical tests available
for understanding diachronic changes in radiocarbon SPDs, these ana-
lyses tend to be more difficult to interpret and they “fail to link theory
and predictive models with spatial archaeological data” (Morgan, 2009,
389). We argue that NNS approaches to SPDs are valuable precisely
because they are simple first-order approximations of more complex
problems, making them easier to integrate with simple formal models

from population ecology.
Without proper geographic considerations, human spatial distribu-

tions will always be clustered when measured by NNS. Physiography
will always tend to cluster human land use patterns to some degree (e.g.
humans prefer level terrain, and rarely focus habitations on mountain
slopes or peaks), though we do not know what that baseline degree is.
Wyoming is a region of mountains and basins, and as Fig. 1 shows, most
of our dataset comes from basin regions. We argue that R values would
be more biased if we had more upland occupations, as the natural
clustering would obscure the role of settlement in these areas. Despite
these natural limitations to NNS values, we argue that diachronic trends
in R values should reflect real behavioral patterns, and these patterns
should be structured by factors that can be modeled ecologically. We
derive a set of expectations for the R values assuming the three different
Ideal Distribution Models from population ecology.

4.2. Ideal Distribution Models

IDMs were developed in population ecology in order to understand
habitat selection, specifically the relationship between habitat suit-
ability and population density (Fretwell and Lucas, 1969). The models
assume that habitat suitability varies in its ability to provide necessary
resources for individuals, and therefore potential for sustaining certain
animal populations. There are three variants of IDMs (Winterhalder and
Kennett, 2006; Codding and Bird, 2015) which are differentiated by
whether individuals are “free” to settle in their preferred habitat, and
by negative versus positive density dependence of conspecifics (Fig. 5).
Negative density dependence means that the addition of a new in-
dividual to a habitat diminishes the quality of the habitat, whereas
positive density dependence means that the addition of a new in-
dividual enhances the quality of the habitat. Fig. 6 depicts each of the
three IDM models described in Fig. 5 in terms of their expected NNI R
values. The expected values are based on the difference between ne-
gative and positive density dependent expectations for the different
IDM models, where R values> 1 are negative density dependent and
values< are positive density dependent. We stress that these values are
more relative than absolute measures of clustering or dispersion.

The population in an ideal free distribution (IFD) model has a ne-
gative density dependence (Fig. 5). Given two different habitats with
different suitability, individuals are expected to inhabit the habitat with
the highest suitability first. With the addition of each individual, the
suitability of this habitat diminishes to a level where it is equal to the

Fig. 4. Clark-Evans R as a function of the SPD. Red
line is the mean R value of 10,000 realizations with
grey and black representing the 68% and 95% con-
fidence intervals, respectively. We boxcar smooth the
data by 500 years. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the Web version of this article.)
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suitability of the second, lower ranking habitat. At this point, where the
first and second habitats have equal productivity, individuals will then
move to the second habitat. This process continues, with individuals
eventually settling in habitats that were originally lower ranking. An
IFD will yield a NNS of R > 1 (Fig. 6) due to its inherent negative
density dependence. IFD models were the first IDMs to be applied to
archaeological problems (Winterhalder and Kennett, 2006), and have
also been the most widely applied in archaeology. Most applications of
IFD models in archaeology have focused on the colonization of new
landscapes (Kennett et al., 2006; McClure et al., 2006; Winterhalder
and Kennett, 2006; Codding and Jones, 2013; Williams et al., 2015a;
Jazwa et al., 2016). However, recent applications to complex societies
(Jazwa and Jazwa, 2017; Prufer et al., 2017) illustrate their broader
potential.

The second IDM adds positive density dependence to the IFD model.
This model is referred to as the Ideal Free Distribution with Allee effects
(IFDA) (Allee et al., 1949; Stephens et al., 1999; Greene and Stamps,
2001) (Fig. 5). The positive density dependence of IFDA means that as
each individual is added to a habitat, the suitability of that habitat
increases. Habitat suitability increases to a certain point, after which
diminishing returns kick in, the habitat declines, and some individuals
move to lesser quality habitats. IFDA models illustrate the power of
populations working together to enhance the quality of their habitats,
also known as increasing returns to scale. For this reason, IFDA models
have been applied to research on transitions to agriculture (McClure
et al., 2006). Recent work (Codding et al., 2017) has noted how larger
cooperative groups display greater territorial behaviors. An IFDA will
yield a NNS of R < 1 (Fig. 6) due to its positive density dependence,
but over time a threshold is eventually passed in which groups start to
bud off, leading to R values approaching 1, indicating increased dis-
persal of populations.

The Ideal Despotic Distribution (IDD) (Sutherland, 1996; Bell and
Winterhalder, 2014) is negative density dependent like IFD (Fig. 5).
However, the IDD is distinguished by the introduction of territorial

Fig. 5. Graphical representations of Ideal Distribution Models: a) ideal free
distribution (IFD); b) ideal free distribution with Allee effects (IFDA); c) ideal
despotic distribution (IDD) models. H1: Habitat 1; H2: Habitat 2. i and ii:
suitability at which populations move to more suitable habitat. d1, d2, d3: op-
timal population densities at which individuals should leave for a more suitable
habitat. Two key things to notice: 1) Populations leave a habitat faster in ideal
despotic distributions than in ideal free distributions; 2) In an Allee effect
model, the increase of population leads to an increase of habitat suitability to a
certain point, after which populations start to leave the habitat. From (Codding
and Bird, 2015).

Fig. 6. Nearest neighbor values as population increases through time for the
three different IDMs. IFD: red line; IDD: green line; IFDA: blue line. R > 1
represents dispersal of populations in space, and negative density dependence
(white highlighted area); R < 1 represents clustering of populations in space,
and positive density dependence (grey highlighted area). (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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behavior. If individuals start actively defending high ranking habitats,
then new individuals entering the region will be more quickly displaced
to other lower ranking habitats. An IDD will yield a NNS of R > 1
(Fig. 6). Because of territorial exclusion in an IDD system, populations
will disperse at faster rates than IFD models, which means that R values
will increase more rapidly than in an IFD system. Discriminating be-
tween an IDD and IFD is possible with additional archaeological in-
formation, i.e., evidence of defensive architecture and violence (Jazwa
et al., 2017; Prufer et al., 2017). The role of territoriality in IDD models
has enabled them to be useful in considering the tempo and processes of
demographic expansion (Shennan, 2007; Kennett and Winterhalder,
2008) and the dynamics of complex societies (Williams et al., 2015a;
Prufer et al., 2017; Jazwa et al., 2017).

We propose that each of the different IDM variants will produce
different temporal structure in the spatial distribution of populations.
Recent work applying IDMs to archaeological problems have focused on
oscillations between different kinds of IDMs (McClure et al., 2006;
Williams et al., 2015a; Prufer et al., 2017). McClure et al. (2006) focus
on the transition between an IFD and an IFDA during the Neolithic
period in Spain. Williams et al. (2015a) and Prufer et al. (2017) focus
on transitions between IFD and IDD systems in the development and
transitions of complex societies in Australia and Mesoamerica. One of
the remaining challenges is understanding the relationships between
IFDA and IDD systems. In other words, an understanding of the cir-
cumstances under which cooperative or competitive behavior is the
dominant social dynamic.

The central challenge in discriminating between IDD and IFDA
models as populations increase over time is that these systems can start
to reveal similar qualities (Bell and Winterhalder, 2014). As, for ex-
ample, when IDD models flip to positive density dependent situations
due to despots providing certain concessions to keep people in their
territories in order to take advantage of their labor (Bell and
Winterhalder, 2014). However, because this example of an IDD flipping
to a positive density dependent situation is controlled by a despot
within a firm social-political structure, we expect there to be an abrupt
shift from high R values to low R values that will be easily revealed in
time-series patterns. Patterns for an IFDA will change less abruptly, and
will not be as heavily clustered as those from an IDD. Nevertheless,
because both IDD and IFDA can be dynamic as population grows
through time, we still expect an IFDA to possibly move from a more
clustered to a more dispersed pattern as positive density dependence
approaches local or regional carrying capacities. As with the compar-
isons of IDD to IFD, in IFDA situations, R values will not cluster or
disperse as abruptly as we would expect from IDD situations with
despots having firm control over rates of clustering or dispersal. Fur-
thermore, as mentioned above, these different models can be delineated
by the analysis of other archaeological proxies.

4.3. Applying IDMs to SPDs in space

We seek to understand whether rates of population growth from
12000 to 6000 cal BP reflect an IFD in which regional carrying capa-
cities are yet to be reached (Bettinger, 2016) and, in particular, if
spatial distributions of populations in Wyoming during the period of
population stasis from 6000 to 4500 cal BP, and population decline
from 4500 to 2000 cal BP, reflects different spatial distributions in-
dicative of other IDM models. The NNS trends in Fig. 3B reveal that the
period of population stasis occurs during a transition from a relatively
clustered to an increasingly dispersed population. The period of popu-
lation decline occurs during this continued period of dispersed popu-
lations. These results suggest that population growth, stasis and decline
have correspondent oscillations in spatial distributions of prehistoric
populations. Importantly, these trends highlight that population growth
from 12000 to 6000 cal BP did not occur during a period in which
populations could increasingly bud off from each other and inhabit
other regions in a negative density dependent IFD situation, but rather,

that population growth occurred during relatively clustered social or-
ganizations in a positive density dependent Allee-like situation. The
population decline after 4500 cal BP also corresponds with ecological
theory that eventually Allee effects have negative impacts on popula-
tion growth, as they make populations vulnerable to disease transmis-
sion and local and global extinction over time (Stephens and
Sutherland, 1999).

SPD approaches require the use of multiple proxies, in the forms of
other lines of archaeological evidence (Williams, 2012; Crombé and
Robinson, 2014), in order to move from first-order pattern recognition
of population trajectories to an understanding of human behavioral
change. The same is true for testing hypotheses for different IDMs for
particular periods of time.

The Wyoming case study provides evidence to corroborate the in-
terpretation of Allee effects leading to early-mid Holocene population
growth and stasis. The period of greatest population growth and re-
lative settlement clustering in Wyoming, from ca. 8000-5500 cal BP,
corresponds with the appearance and proliferation of pithouse archi-
tecture. This period comprises around 70% of the total pithouses ex-
cavated during the Archaic period in Wyoming (Buenger and Goodrick,
2017). Pithouses decrease dramatically after ca. 5000 cal BP (Buenger
and Goodrick, 2017), during which time there is stasis in population
growth and increasing dispersal of populations. Pithouse architecture
has been interpreted as seasonal occupations that were used persis-
tently from one season to the next by small family groups who would
focus on predictable plant and animal resources (Smith, 2003; Smith
and McNees, 2011; Buenger and Goodrick, 2017). Use of spatial orga-
nization in this way would enable groups to pool their labor for more
efficient extraction of resources (Smith and McNees, 2011). This
pooling of labor generated increasing returns and enhanced the suit-
ability of habitats, which as highlighted above, are hallmarks of Allee
effects. The relative spatial clustering of populations during this time is
indicative of within-group cooperation driven by Allee effects asso-
ciated with intensive economies (Codding et al., 2017), in this case
predictable plant and animal resources during spring and fall, which
were the leanest time of the year in Wyoming (Smith, 2003). As men-
tioned above, this period of greatest relative population clustering also
corresponds to the end of the Holocene thermal maximum (Shuman and
Marsicek, 2016), during which it would have been even more chal-
lenging to capture resources, and likely provided even greater moti-
vations for pooling labor resources. However, eventually, the negative
impacts of Allee effects started to kick in, as evidenced by the decline of
pithouses, the increasing dispersal of populations, and the overall de-
cline of population sizes.

Much work remains to further test the possible negative impacts of
Allee effects on the sustainability of populations and the possible roles
of disease transmission and other social or ecological processes. For the
time being, our aim in this paper has been to introduce an integrated
theory and method that can begin to provide testable hypotheses that
will be the subject of future research.

5. Conclusion

We develop a simple method for mapping radiocarbon SPDs in
space that is explicitly integrated with a theoretical framework from
population ecology. Future work to better understand higher-order
properties of the spatial distribution of radiocarbon time series will
employ more sophisticated statistical techniques.

One of the outstanding challenges in using large radiocarbon date
time series (SPDs) to understand population growth throughout pre-
history concerns the possibility that inflections in time series are in-
dicative of changes in social organizational processes. In this paper we
have employed a simple first-order spatial statistic allowing us to
compare with different models from population ecology. Our results
suggest that prehistoric population growth throughout the Holocene in
Wyoming occurred during relatively more clustered and cooperative,

E. Robinson et al. Journal of Archaeological Science 101 (2019) 63–71

69



positive density dependent situations. By developing methods of spa-
tiotemporal analysis, we can begin to understand how radiocarbon time
series reflect important prehistoric shifts to territoriality and competi-
tion within/between societies, as well as when societies transition to
cooperative and positive density dependent economies of scale.

Data release statement

The radiocarbon dates used for the analysis can be found in the
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