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Ecosystems on the verge of major reorganization—regime shift—
may exhibit declining resilience, which can be detected using a
collection of generic statistical tests known as early warning sig-
nals (EWSs). This study explores whether EWSs anticipated human
population collapse during the European Neolithic. It analyzes re-
cent reconstructions of European Neolithic (8–4 kya) population
trends that reveal regime shifts from a period of rapid growth
following the introduction of agriculture to a period of instability
and collapse. We find statistical support for EWSs in advance of
population collapse. Seven of nine regional datasets exhibit increas-
ing autocorrelation and variance leading up to collapse, suggesting
that these societies began to recover from perturbation more slowly
as resilience declined. We derive EWS statistics from a prehistoric
population proxy based on summed archaeological radiocarbon date
probability densities. We use simulation to validate our methods and
show that sampling biases, atmospheric effects, radiocarbon calibra-
tion error, and taphonomic processes are unlikely to explain the
observed EWS patterns. The implications of these results for under-
standing the dynamics of Neolithic ecosystems are discussed, and we
present a general framework for analyzing societal regime shifts
using EWS at large spatial and temporal scales. We suggest that
our findings are consistent with an adaptive cycling model that
highlights both the vulnerability and resilience of early European
populations. We close by discussing the implications of the detection
of EWS in human systems for archaeology and sustainability science.

archaeology | early warning signs | human paleodemography |
Neolithic Europe | resilience

A2012 Special Issue in PNAS debates how analysis of historical
collapse in ancient societies can contribute to sustainability

science (1). Key themes include accounting for complexity and
multicausality in instances of collapse, modeling, and predicting
both short- and long-term environmental change and the im-
portance of historical and archaeological case studies. Although
significant progress has been made in measuring ecosystem
resilience and predicting collapse (2), quantifying the resilience
of human societies presents a major challenge for social science
research (3, 4). Further, the use of archaeological data and EWS
methods to predict known periods of collapse in ancient human
societies (i.e., retrodiction) (5) remains largely unexplored.
Resilience as we use the concept here is defined as the ability of
a system to absorb change and recover from disturbance while
maintaining relationships between populations or state variables
(6). Recent developments in ecology point to a promising new
direction that follows from the observation that ecosystem
resilience tends to decrease in advance of regime shifts—major
transitions among qualitatively distinct ecosystem states (7).
Theoretical and empirical studies of nonhuman systems reveal
that decreasing resilience is detectable via time series statistics
termed early warning signals (EWSs) (8). Although regime shifts
are well documented in human-dominated ecosystems (9–13),
the degree to which EWSs anticipate them remains largely un-
examined due to data limitations at requisite spatial and temporal
scales. However, recent advances in the integration of large-scale

archaeological data (14–16) are narrowing the gap between theory
and data. This study presents what we believe to be the first
statistical evidence for EWSs of regime shifts in human population
dynamics.
Our case studies include 2,378 archaeological sites from nine

regions of Neolithic Europe, ca. 8–4 kya. Previous research has
observed evidence of major demographic regime shifts in the
form of large-scale boom-bust dynamics among many of these
Neolithic cases (17). Estimated population declines range from
20% to 60% in as little as a century. The population proxies that
revealed these boom-bust dynamics are based on the temporal
frequencies of radiocarbon-dated archaeological sites, which are
represented as summed probability densities (SPDs). This site-based
population proxy assumes that the temporal frequencies of occupied
human settlements in a given region index relative human pop-
ulation size. Use of SPD-based approaches to inferring population
change has been debated in the literature (18–26). Critics have
raised concerns about confounding factors including atmospheric
effects, sampling biases, taphonomic processes, or calibration
error; however, the methods used here and elsewhere (20) attempt
to control for these sources of error by (i) correcting systematic
biases in the data and (ii) comparing the corrected empirical
patterns to null SPD models that simulate exogenous processes.
Thus, current SPD methods reflect a significantly more conserva-
tive version of the approach that Rick (27) originally proposed.
We analyze archaeological SPDs for two classes of EWSs:

critical slowing down (CSD) and flickering. CSD describes a general
increase in the time it takes a system to recover from external
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shocks such as population loss due to disease, warfare, or crop
failure. Flickering describes increasing directional bias in a sys-
tem’s response rate to such perturbations, such as a society stuck
in a socio-ecological trap where strong reinforcing behavior and
a lack of innovation prevents adaptation (28–30). Here, flickering
would suggest increasing recovery time from population decline
events relative to growth events before major collapse. Because a
number of nonhuman biological populations exhibit critical slowing
down and flickering in advance of regime shifts (31–38), we consider
the possibility that these EWS indicators could also be detected
in long-term human population dynamics as viewed through ar-
chaeological proxies.

Results
CSD Detection with a Simulated Demographic Regime Shift and an
Archaeological Deposition Process Model. Fig. 1 illustrates how
CSD can be detected in a model system that transitions from a
high growth regime to low growth. In the model, slowly decreasing
human population growth rates and increasing variance precedes
the transition to the low growth regime. These simulated growth
rates are used to simulate an archaeological SPD including deposition
processes, taphonomic decay, atmospheric effects, radiocarbon
calibration, and isotopic counting error processes (Materials and

Methods). The SPD is then evaluated for EWSs using the same
statistical procedures we use in the empirical analysis. Declining
resilience is indicated in the bottom panel by the increasing EWS
indicator values up to the point of collapse. The EWS indicator
increase is statistically significant using the individual tau ob-
servations (τs) and with a robust statistical test (τn). Empirically,
any of a number of drivers such as changing climate, declining
environmental productivity, disease, warfare, or some combina-
tion thereof could produce these results.

Results for All European Neolithic Regions. Qualitative EWS trends
are evident in many cases (Table S1 and Dataset S1), leading us
to perform quantitative tests (see Fig. S1 and SI Text, Early
Warning Signals of Collapse in Neolithic Paris Basin for an
illustrative example). Table 1 presents the results of τ½o� for
the three EWS metrics, including their associated statistical
strengths (P½s�). All but 2 of the 27 tests produced statistically
significant results (P½s� < 0.1), indicating that statistical effects are
unlikely to account for the observed EWSs. However, these
standard probability tests for τ½o� do not distinguish between EWSs
produced by Neolithic demographic processes and those produced
by the confounding factors, so we next compare the empirical tau
values to a simulated null model. This comparison shows that in

Table 1. EWS analysis results of summed probability distributions of nine European regions

Region

AR (1) σ 1γ

τ½o� P½s� P½n� τ½o� P½s� P½n� τ½o� P½s� P½n�

Southern Germany 0.54 0.00*** 0.04** 0.89 0.00*** 0.32 −0.78 0.00*** 0.04**
Eastern Switzerland 0.59 0.00*** 0.05** 0.13 0.11 0.47 −0.47 0.00*** 0.14
England and Wales (without

Wessex and Sussex)
0.49 0.00*** 0.04** 0.96 0.00*** 0.01*** −0.51 0.00*** 0.14

Ireland 0.70 0.00*** 0.01*** 0.96 0.00*** 0.03** −0.37 0.00*** 0.27
Paris Basin 0.65 0.00*** 0.01*** 0.97 0.00*** 0.09* −0.30 0.00*** 0.18
Rhone-Languedoc 0.65 0.00*** 0.09* 0.95 0.00*** 0.04** −0.79 0.00*** 0.27
Scotland 0.49 0.00*** 0.03** 0.95 0.00*** 0.02** −0.09 0.31 0.42
Southern England (Wessex and Sussex) 0.42 0.04** 0.17 0.68 0.00*** 0.06* −0.44 0.00*** 0.13
Western France 0.48 0.02** 0.14 0.62 0.00*** 0.04** −0.36 0.02** 0.37

Significance levels: *P = 0.10; **P = 0.05; ***P = 0.01.

Fig. 1. A regime shift model of population growth rate variability, radiocarbon date calibration, and EWSs that demonstrates CSD in growth rates can be
recovered from simulated SPDs.
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seven of nine regions, both AR (1) and σ exhibit increases that are
significantly different from those produced by the null model
(P½n� < 0.1). Conversely, 1γ produces only one result of nine that
is significantly different from the tau values produced by the null
model. We conclude that confounding factors (i) are unlikely to
account for the majority of CSD patterns in the empirical data
but (ii) can account for the majority of skewness patterns in
the data.
Table 2 considers whether the multiple statistically significant

results could be obtained by chance given P½n� values that are
uniformly distributed between 0 and 1. For each set of nine P½n�
outcomes for AR (1), σ, and 1γ, Fisher’s exact tests for AR (1)
(7:2) and σ (7:2) show that the empirical results are unlikely to
be explained by sampling effects (P< 0.01), whereas 1γ (1:8) can
be explained by sampling effects (P= 1). In sum, the data from
all regions reveal evidence of CSD but flickering does not appear
to be a useful indicator of population collapse.

Discussion
It is unsurprising that societies on the verge of collapse may
exhibit warnings signs; yet it is difficult to demonstrate such
phenomena empirically. Our results support the hypothesis that
CSD was present in Neolithic Europe demographics, detectable
in archaeological SPD curves, and that the EWSs are not arti-
facts of sampling or confounding effects. This surprising
finding encourages us to explore systemic relationships between
human paleodemography and CSD and to consider the impli-
cations for human ecosystem monitoring (see also SI Text,
Theoretical Considerations Related to SPD-Based EWSs Among
Human Societies).

Regime Shifts in Human Societies.Human population dynamics are
known to exhibit multidimensional and nonlinear processes; there-
fore, regime shifts and EWSs should also be expected. Equilibrium,
multiple stable population points, and chaotic regimes are all known
to emerge from even the simplest demographic models (39). When
density-dependent population feedbacks, or Allee affects, interact
with logistic growth and environmental perturbations, critical tran-
sitions may ensue (6, 40). Allee effects and logistic growth processes
have been observed or suspected in many biological populations
including yeast, plants, shellfish, and humans (41–43). Moreover,
human systems involve cross-generational effects of past envi-
ronments on the population levels of later generations (44, 45).
For example, dramatic environmental change, warfare, disease,
or complex interactions among these mechanisms may lead to
population collapse. Regime shifts and CSD should therefore
be expected in at least some human population dynamics.

A Framework for Interpreting EWSs Among Human Populations at
Large Spatial and Temporal Scales. Following a recent theoretical
synthesis on resilience in socio-ecological systems (46), we consider
the following three generic mechanisms that may offer insights into
the general mechanisms of regime shifts in human systems over
large spatial and temporal scales: (MI) a slowly changing driver to

tipping point, (MII) interaction of fast and slow cycles, and (MIII)
large but infrequent changes in external drivers.
MI entails an external driver that slowly forces a system across

a tipping point to a qualitatively different state. Such critical tran-
sitions entail feedback loops that create the context for nonlinear
responses to linear changes in the external driver (37). As noted
above, Allee effects can trigger critical transitions, and several
authors (37, 47) propose that Neolithic population collapse in
the US Southwest and among human societies more generally
can be understood as critical transitions [see also (48)]. As re-
source availability steadily declines, sunk-cost effects can gen-
erate adaptive feedback loops that artificially lock humans into
maladaptive strategies such as remaining in established set-
tlements until the exogenous driver eventually forces the system
across a tipping point into an alternative adaptive regime. Con-
tinuing on such unsustainable courses in the face of steady resource
decline ultimately leads to catastrophic failure. More recently, Lade
et al. (49) show that common-pool resource management systems
can create a context for critical transitions in human societies when
external drivers slowly force systems to alternative states.
In MI systems, the timing of regime shifts can be predicted at

the point when variance and autocorrelation reach infinity,
known technically as a bifurcation point (or tipping point). However,
reaching a bifurcation point would only happen under stringent
conditions, and stochasticity in real-world systems will tend to trigger
regime shifts before the theoretical transition; for example, in
early agricultural societies (Fig. S2). Regardless, CSD should pre-
cede the regime shift (46). Of the three mechanisms discussed here,
only MI causes true critical transitions with bifurcations. As a result,
reducing or reversing the driver variable after a bifurcation will not
return the system to the previous regime without resetting other
system parameters (i.e., hysteresis). The other two mechanisms also
cause regime shifts, but because recovery is possible and the changes
are not permanent, these are not considered critical transitions (46).
MII describes interaction between slow and fast cycles that can

cause dramatic regime shifts without bifurcation. For example,
annual cultivation cycles in agricultural systems that involve forest
clearing (i.e., swidden or slash-and-burn) are highly constrained by
soil fertility and biomass recovery dynamics occurring over decades.
Repeated and intensive forest cultivation can cause local resources
to become depleted and ultimately trigger the abandonment of
settlements, but eventually forests and soils can recover and aban-
doned settlements may be reoccupied. Many types of environmental
and human cycling exist that could lead to interactions and regime
shifts, including environmental overexploitation and recovery
(45, 50), biogeochemical cycling (51), land surface change (2),
climate cycling (52), epidemiology (53), human demography
(13), and episodes of human violence (54, 55). These dynamics
are predicted to exhibit the statistical signatures of CSD (46).
In MIII systems, a large but infrequent change in external con-

ditions forces a system into another state. For example, catastrophic
population losses could result from unusual natural disasters (56,
57), the emergence of genetically novel disease transmission vectors
[e.g., airborne transmission of Yersinia pestis (58) and the Black
Death (59)], social conflict at novel scales of severity (e.g., World
War I), or extreme and rare climatic events such as volcanic
eruptions (e.g., Pompeii). However, the demographic system
itself is not trapped at low levels and may eventually recover.
EWSs are not expected in such cases (46).

Implications for Understanding the Causes of Collapse During the
European Neolithic. The EWS analysis of Neolithic Europe pop-
ulation dynamics tends to exhibit EWSs in AR (1) and σ, suggesting
that MI and MII are plausible and that MIII is unsupported.
However, determining which of the two potential regime shift
mechanisms is the more plausible explanation for a pattern of
collapse occurring independently at different times and in different
regions throughout Europe cannot be determined from the EWS

Table 2. Fisher’s exact tests for multiple analyses

Tau (τ½o�) EWS Pass† Fail† CI low CI high P‡

Sample (P½s�) AR (1) 9 0 6.67 Infinity 0.00***
σ 8 1 3.54 4,053.00 0.00***
1γ 8 1 3.54 4,053.00 0.00***

Null model (P½n�) AR (1) 7 2 2.20 1,854.15 0.00***
σ 7 2 2.20 1,854.15 0.00***
1γ 1 8 0.02 117.49 1.00

Significance level: ***P = 0.01. CI, confidence interval.
†Pass/fail at P < 0.1.
‡Expected ratio used in Fisher test is 1:8, pass:fail.
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analysis alone. Instead, we use wavelet analysis to test the expec-
tation of an MII slow-fast cycling mechanism (SI Materials and
Methods). For example, the Wessex-Sussex region of England ex-
hibits statistically significant cycling patterns in the SPDs (Fig. 2). In
this case, the standard Gaussian white-noise filter identifies signif-
icant cycles at high frequencies that are probably associated with the
radiocarbon date calibration process. However, when we use a
noise filter based on the SPD null model distribution, the main
statistically significant cycles remaining are around 5.5 kya with a
frequency of between 400 and 1,000 y. The pattern holds for each of
the nine regions (Dataset S1), and we find it to be in line with
predictions from human demographic modeling (13). A possible

explanation is that interactions between fast human demographic
cycles and slower ecosystem recovery cycles may explain the observed
pattern of demographic collapse in Neolithic Europe. Similar cycling
patterns have been observed among prehistoric agrarian populations
in the US Southwest (54, 55), and the hypothesis is consistent with
recent paleoenvironmental research that finds correlations between
deforestation and human population growth during the European
Neolithic (60–62). Using the framework introduced in the previous
section, this deforestation hypothesis would suggest that MII cycle
interactions between rapidly increasing human population levels and
environmental dynamics during the early Neolithic may have con-
tributed to the observed demographic collapses.

Fig. 2. Wavelet analysis of Southern England showing Neolithic transition date (red line), periods of significant cycling and frequency using a Gaussian noise
(white highlight), and the SPD null model (black highlight).
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Importantly, fast–slow cycle interactions in human societies
are more consistent with adaptive cycles (3, 45) than Lotka–
Volterra interactions. In contrast to the latter, adaptive cycling
emphasizes collapse and reorganization that may or may not
reproduce previous ecological states. Instead, each collapse is
generally followed by a level of recovery that sometimes excee-
ded precollapse levels and was often accompanied by distinct
socioeconomic structure (e.g., Bronze Age systems). Recovery
may be understood as the outcome of adaptive reorganization on
fundamentally altered cultural and natural landscapes. Such re-
organization is generally expected among human populations
with cumulative culture. In some cases, endogenous expansion-
growth dynamics may have temporarily increased societal resil-
ience to changing rates of climate variability (e.g., during Linear
Pottery Culture) (63). Therefore, on one hand, some societies
tended to experience quantifiable loss of resilience that led to
dramatic declines in population levels; on the other hand, other
societies recovered to generate larger and presumably more re-
silient populations. Where recovery did not occur, other societies
with new adaptations moved in, as ancient DNA studies are
beginning to show (64). As such, our results highlight both the
vulnerability and the resilience of early European societies.

Conclusion: Prospects and Contributions to Archaeology and
Sustainability Science
During the Neolithic revolution new agricultural technologies
initiated rapid demographic growth, followed by periods of
devastating societal instability that we are only now beginning to
understand. It remains unclear whether modern technological
innovation can continue to outpace demand, and it is important
for sustainability scientists to consider the possibility that generic
mechanisms can contribute to demographic collapse in human
societies, as well as to develop ways to detect declining resilience.
Here we present evidence that early warning signals preceded
large-scale population collapse in the European Neolithic Pe-
riod. To encourage further study of human ecodynamics, we
include a framework for interpreting societal regime shift at
large spatial and temporal scales that links three generic mech-
anisms that are known for causing social and ecological regime
shifts with social processes such as growth and collapse, climate
change, resource degradation, disease, and warfare. We suggest
that complex interactions among social and natural factors, and

emergent patterns such as Allee and sunk-cost effects, may slow
the recovery of human societies during periods of decreased
resilience. Further, distinct statistical signatures of declining resilience
due to these processes are detectable despite the complex de-
positional processes that confound archaeological proxy data.
We suggest that the detection of EWSs in human settlement
patterns is a general finding that points to a need for EWS
analyses of other types of archaeological data and other histor-
ical datasets. We believe our framework can provide a way to
analyze complex dynamics in human ecosystems, and perhaps
ultimately to monitor and prevent catastrophic consequences of
societal regime shifts.

Materials and Methods
Archaeological Radiocarbon Database. The complete dataset includes ar-
chaeological radiocarbon dates comprising 2,759 sites for Mesolithic and
Neolithic Europe, ca. 10–3.5 kya (65). Nine regions were selected for the EWS
analysis because they provide the clearest qualitative and quantitative shifts
from high to low growth regimes (Table S2).

Statistical Methods and SPD Modeling. To minimize the effects of sampling
bias, radiocarbon calibration effects (66) and taphonomic bias (21), we use
the Bchron R package (67), IntCal13 (68), and Monte Carlo simulation to
generate a corrected SPD curve (Fig. S3). The EWS analysis involves isolating
subsets from each time series from the Neolithic transition to the point of
collapse, detrending the resulting time series, and calculating three EWS
statistics including autocorrelation, variance, and skewness following ref. 69.
EWS patterns are assessed qualitatively (Table S1), and statistically using the
Kendall’s tau rank correlation test with both an optimized tau value (Table 1)
and the complete time series (Table S3). The procedures for generating a null
model follow ref. 17 and the rigorous statistical test for examining the effects
of confounding archaeological factors on the EWS analysis involves computing
cumulative density functions from the null model and calculating the proba-
bilities of each observed EWS statistic using single-tailed tests. Fisher’s exact
tests are used to determine the probability of the significant EWS statistics τo
and τ½o� for the optimized time series (Table 2) and for the full time series (Table
S4). A sensitivity analysis evaluates the effect of sliding window size and the
length of the time series on the significance of the EWS statistics (70) (Dataset
S1). These EWS methods (Fig. S4), the simulation shown in Fig. 1, and the
wavelet analysis (71, 72) are described in further detail in the SI Materials and
Methods. All analyses are performed using R (73). Code is available on request.
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