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A comparison of proteomic, 
genomic, and osteological methods 
of archaeological sex estimation
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charlene nijmeh8, Monica Arellano8, Alan Leventhal8,9, Brett phinney7, Brian f. Byrd4, 
Ripan S. Malhi3,5,10 & Glendon parker1*

Sex estimation of skeletons is fundamental to many archaeological studies. currently, three 
approaches are available to estimate sex–osteology, genomics, or proteomics, but little is known 
about the relative reliability of these methods in applied settings. We present matching osteological, 
shotgun-genomic, and proteomic data to estimate the sex of 55 individuals, each with an independent 
radiocarbon date between 2,440 and 100 cal BP, from two ancestral Ohlone sites in Central California. 
Sex estimation was possible in 100% of this burial sample using proteomics, in 91% using genomics, 
and in 51% using osteology. Agreement between the methods was high, however conflicts did occur. 
Genomic sex estimates were 100% consistent with proteomic and osteological estimates when DNA 
reads were above 100,000 total sequences. However, more than half the samples had DNA read 
numbers below this threshold, producing high rates of conflict with osteological and proteomic data 
where nine out of twenty conditional DNA sex estimates conflicted with proteomics. While the DNA 
signal decreased by an order of magnitude in the older burial samples, there was no decrease in 
proteomic signal. We conclude that proteomics provides an important complement to osteological 
and shotgun-genomic sex estimation.

Biological sex plays an important role in the human experience, correlating to lifespan, reproduction, and a 
wide range of other biological  factors1–5. Sex and gender are also fundamental in structuring an array of cultural 
behaviors, including residence patterns, kinship, economic roles, and identity construction and  expression6–9. 
How sex interacts with gender and these particular issues is not static and can vary in detail across societies and 
over  time10–12. It is not surprising that sex is one of the most basic and important measures in bioarchaeological 
and forensic analyses.

Typically, osteological features are used to estimate sex of skeletal remains, and the most widely used marker 
is the morphology of the os coxae13–16. However, appropriate markers are not always sufficiently expressed or 
preserved to estimate sex using morphological  criteria17. A lack of sexually-dimorphic markers is especially acute 
for skeletons of infants and children who have not undergone puberty. Mortuary practices, such as cremation or 
secondary burial in charnel houses, can also can impose limitations on the utility of osteological sex  estimates18.

The advent of DNA sequencing made it possible to use skeletal remains to estimate the sex of very young indi-
viduals; it also expanded sex estimations for fragmentary, pathological, and degraded skeletal  materials19–21. More 
recently, development of massively parallel DNA sequencing greatly improved genome coverage in archaeological 
 samples22–25. In addition to providing detailed genetic information, this allows biological sex to be estimated 
from shotgun sequencing  data25–27. These approaches were an improvement over earlier PCR-based marker 
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methods, which were less sensitive and had a higher risk of  contamination28–32. Even with the application of 
high-throughput genomic data, confident estimation of biological sex is still restricted by requirements for high 
levels of DNA  preservation27.

Recently, proteomic analysis of sex-specific amelogenin peptides in tooth enamel has been forwarded as an 
additional means of sex estimation in archaeological  settings33–37. Amelogenin genes are well-studied genetic 
markers of the X and Y chromosomes and have long been a basis of forensic sex  determination20,38–40. Proteins 
can be useful targets for analysis in many archaeological settings as their molecular structure is more favorable 
for preservation relative to  DNA41–44. Moreover, because amelogenin peptides are incorporated within the min-
eral phase of tooth enamel, the hardest and most durable material in the human body, such peptides may be 
particularly stable and persistent over long periods of  time45–47.

The availability of three independent methods of sex estimation provides an opportunity to compare and 
cross-check techniques against one another. While recent remains of known sex can be used to validate and 
estimate the precision of these techniques, such remains do not replicate archaeological conditions. In the cur-
rent study, we apply three techniques: proteomic analysis of amelogenin peptides, shotgun-sequenced DNA, and 
standard osteological methods to determine the sex of human remains from two Late Holocene ancestral Ohlone 
villages in Central California: Síi Túupentak (CA-ALA-565/H; ca. 600–100 cal BP) and Rummey Ta Kuččuwiš 
Tiprectak (CA-ALA-704/H; ca. 2,440–180 cal. BP) (Fig. 1). Genomic data were further analyzed using two distinct 
algorithms, one that compared the ratio of Y-chromosome reads to all sex chromosome reads  (RY)48, and another 
that compared the ratio of X-chromosome reads to all autosomal reads  (RX)27. In many cases (n = 55) each method 
of sex estimation, genomic, proteomic, and osteological, was applied to remains from the same individual.

To date, this is the largest study using sexually dimorphic amelogenin peptides to estimate biological sex and 
the largest to estimate sex based on matching shotgun DNA  sequencing25,27. This allows us to directly compare the 
respective techniques at a statistical level, and provides a broader framework for interpretation of sex estimation 
data that employs the strengths and limitations of each approach.

Figure 1.  Map showing general location of Síi Túupentak (CA-ALA-565/H) and Rummey Ta Kuččuwiš 
Tiprectak (CA-ALA704/H) in the San Francisco Bay area of California. Map was created by Far Western 
Anthropological Research Group with ESRI ArcGIS Desktop 10.6 (https ://www.esri.com/).

https://www.esri.com/
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Background
Genomic methods for sex estimation. Earlier PCR-based approaches that targeted sex-specific molec-
ular markers, usually the amelogenin gene family, were often affected by modern  contamination20,30,32. A benefit 
of shotgun DNA sequencing is that it can detect chemical modifications characteristic of ancient DNA (aDNA) 
and identify exogenous DNA  contamination49. Skoglund and  colleagues25 developed a genomic method of sex 
determination that takes advantage of high-throughput shotgun-DNA sequencing. This method  (RY) estimates 
sex using sequence reads of 30 base pairs (bp) or longer that map to human X- and Y-chromosomes.  RY is 
calculated as the number of Y-mapped reads compared to the total number of X- and Y- mapped reads. The 
 RY method does not filter out homologous portions, but relies on a large number of total sequences to return 
a robust determination of sex.  RY criteria were defined based on published data from 14 modern humans of 
known sex and 16 archaeological remains that had high-quality, prior PCR-based sex determinations. By artifi-
cially down-sampling sequences from these same individuals, Skoglund et al.25 recommended that a minimum 
of 100,000 total chromosome reads mapped to the human reference genome (or 3,000 reads mapped to sex-
chromosomes) were needed for confident sex estimations.

This degree of preservation may be problematic for many archaeological remains, as noted by Mittnik et al.27. 
To reduce the required number of mapped human sequences, Mittnik and colleagues proposed an alternative 
method of sex estimation  (RX) using high-throughput shotgun-sequenced DNA. The  RX method relies on the 
proportion of reads mapped to the human X chromosome compared to the proportion of reads mapped to each 
of the autosomal chromosomes. By down-sampling reads from the same high-quality ancient DNA data sets 
used in Skoglund et al.25, the  RX method was able to give confident assignments with as few as 1,000 human 
genome  reads27.

proteomic approach to sex estimation. Amelogenin genes are located on both the X- and Y- chro-
mosomes in humans and play a major role in the biosynthesis of  enamel50–52. These genes express distinctive 
isoforms of amelogenin proteins, AMELX_HUMAN (AMELX) and AMELY_HUMAN (AMELY)38,40,53, and 
detection of these proteins can be used to estimate sex over archaeological time  scales33–35,37,54,55. Nano-liquid 
chromatography coupled with orbitrap tandem mass spectrometry (nLC-MS/MS) allows peptides to be identi-
fied at two levels. The MS1 level measures the precise molecular mass of the intact peptide, and subsequent MS2 
data results in a spectrum of fragmented masses that together can be used to statistically match the most likely 
amino acid sequence to mass fragments of the MS1  peptide56. Signals from peptides with unique amino acid 
sequences specific to either AMELX or AMELY are identified, while those that are homologous are filtered out. 
Following removal of these non-specific amelogenin peptides, signals of all peptides unambiguously attributed 
to either AMELX or AMELY are then combined into a single  measure33. This process differs from the methods of 
Stewart et al.34,36,57, Wasinger et al.35, or Froment et al.54, which relied on detection of two or four unique peptide 
masses only. In contrast, the proteomic method employed here identifies and sums signal intensities of multiple 
different AMELX and AMELY peptides with various permutations of common post translational modifications 
(PTMs), such as deamidation or oxidation. The ability to measure a greater number of specific peptides should 
increase sensitivity. Sensitivity is also likely to be increased in our method by using destructive chemistries as 
opposed to simple acid-leaching that seeks to preserve gross  anatomy34,58.

Archaeological sites. Síi Túupentak (CA-ALA-565/H) and Rummey Ta Kuččuwiš Tiprectak (CA-
ALA704/H) are ancestral Native American Ohlone settlements situated in a well-watered valley in the southeast 
portion of the San Francisco Bay region, Central California, USA (Fig. 1). Large-scale infrastructure construc-
tion required substantive archaeological excavations at both sites, which were carried out by the Far Western 
Anthropological Research Group (FWARG)59,60. Prior to fieldwork, the state-appointed Most Likely Descendent 
of the Muwekma Ohlone Tribe recommended detailed analysis of all ancestral remains encountered. The Tribe 
collaborated with FWARG on the project, participated in all aspects of fieldwork, and were the primary excava-
tors of all burials. Tribal leadership approved all analytical studies of ancestral remains and partnered with the 
research team to conduct this research. All burials were subject to osteological analysis (n = 105), all radiocar-
bon-dated burials (n = 99) were sampled for DNA, and 55 were sampled for amelogenin proteins. Archaeological 
mitigation of construction impacts to these archaeological sites, including the discovery, excavation, analysis 
and reporting of human remains, strictly conformed to all state and local laws and regulations. Members of the 
Muwekma Ohlone have seen and been provided an opportunity to contribute to the final version of the write-up 
of this study. In addition to their contributions to this study, the Muwekma Ohlone have advocated for science 
and genomics as a tool for Indigenous peoples and have strongly supported the Summer internship for INdig-
enous peoples in Genomics (SING) program.

Results
Archaeological contexts. Síi Túupentak (CA-ALA-565/H) is a large, intensively occupied Late Period 
village (129 radiocarbon dates from features, burials, and site midden range from 605–100 cal BP) with both 
domestic debris and associated  cemetery59. Sixty-six burials, comprised of 76 individuals, were recovered. Most 
(71%) were primary inhumations, along with 21% secondary cremations, and 8% secondary inhumations. The 
extent and degree of burning varied between cremations, with the vertebrae, sacrum, pelvis, and proximal fem-
ora being the most commonly preserved elements. Dentition was generally not present for cremations but those 
with suitable preservation were analyzed. Seventy burials were dated between 600 to 110 cal BP (1,350 to 1,840 
CE). Excluding two outliers, most date to a 345-year time span from 525 to 180 cal BP (1,425 to 1,770 CE). All 
dates were calibrated with a mixed marine curve based on established protocols using individual δ13C values, 
and median intercepts were used to organize the  results61. In contrast, nearby Rummey Ta Kuččuwiš Tiprectak 
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(CA-ALA704/H) is a substantial multicomponent settlement with occupation ranging from 2,440–175 cal BP 
(490 BCE–1775 CE), based on 60 radiocarbon dates from generalized site deposits, features, and  burials60. With 
88% of dates falling between 2,440–1,610 cal BP, occupation was most intensive in the Early/Middle Transition 
(2,650–2,150 cal BP) and Middle 1 periods (2,150–1,530 cal BP)59,60. Twenty-five burials comprising 29 individ-
uals were recovered. Virtually all (93%) were primary inhumations, with just 7% secondary inhumations. Most 
interments (n = 26) date from 2,240–1,610 cal BP (290 BCE–340 CE, a 630-year span primarily in the Middle 1 
period), but three date later in time, including two that are contemporary with Late Period Síi Túupentak (Fig. 1).

Sensitivity of different methods. Data for all burials recovered from both sites (n = 105) is available in 
supplemental materials (Table S1). Table S2 shows results of the 55 samples from CA-ALA-565/H and CA-ALA-
704/H where analysis by each of the three methods was attempted. Proteomic analysis of amelogenin provided 
sex estimates in all 55 cases (100%). DNA shotgun sequencing produced reads that mapped to the human refer-
ence genome for 53 of the 55 samples (96%). Genomic sex estimation using the ratio of Y chromosome reads 
compared to total sex chromosome reads  (RY) provided 43 sex estimates (78%). The  RX method, that com-
pared the ratio of reads mapping to the X-chromosome with those mapping to each autosomal chromosome, 
resulted in 50 sex estimates (91%). Osteology provided sex estimates for 28 of the 55 common samples (51%).

Sex estimates fell into definitive or conditional categories. All proteomic estimates were definitive in this 
study, with all males having more than two unique AMELY_HUMAN (AMELY) peptides and females having a 
probability of female sex (Pr(F)) greater than 0.5 (Methods)33,62,63. DNA-based conditional, or “consistent with . . 
.”, estimates had 95% confidence intervals for the ratios that crossed thresholds for definitive XX or XY karyotype 
 assignment25,27. Indeterminate samples fell entirely between the two thresholds. Using the genomic  RY method, 
27 sex estimates (49%) were definitive and 16 were conditional (21%). For the  RX method, 26 estimates were 
definitive (47%) and 24 were conditional (44%). For osteology, conditional estimates were assigned as either 
“probable”, or “possible”, with the latter having less certainty. Osteology provided 15 definitive estimates (27%) 
and 13 conditional (24%) estimates (Table S2).

comparison of genomic and proteomic sex estimation. Overall, there was high consistency between 
the methods. Table 1 shows pair-wise comparisons of the proportion of total agreements and disagreements in 
sex estimates for both definitive and conditional estimates between each method. Proteomic estimates agreed 
with osteological estimates in 27 of 28 cases (96%, Table 1). Genomic estimates using the  RY method agreed with 
osteological estimates in 18 of 23 cases (82%), and in 20 out of 25 cases (80%) using the  RX method. Genomic 
estimates agreed with proteomic sex estimates in 36 of 43 cases (84%) using the  RY, and 41 out of 50 cases (82%) 
when using the  RX method (Table 1).

A closer look at differences between the genomic and proteomic methods is instructive. Although the pro-
teomic method was able to estimate sex in all cases, several were indeterminate using genomic methods, with 
the  RY and  RX method unable to estimate sex in 12 and 5 cases respectively. Two of the cases were indeterminate 
because DNA extraction and sequencing was not successful, while remaining cases were indeterminate based 
on their calculated values (Tables S2, S3).

In addition to the indeterminate cases described above, there were inconsistencies between genomic-based 
and proteomics-based estimates (Tables 1 and 2). On two occasions definitive sex estimates based on  RY values 
were inconsistent with proteomic sex estimation (CA-ALA-565/H Burial 5A and CA-ALA-704/H Burial 23, 
Tables 2, S1, S2, S3). There were no inconsistencies with definitive  RX sex estimates. Proteomic sex estimation 
resulted in a different sex assignment than conditional DNA estimates for 9 out of 24 (38%), and 5 out of 16 
(31%) individuals when the  RX and  RY ratios were used, respectively (Table 1).

Table 1.  Comparisons of consistant, inconsistent definitive, and inconsistent conditional sex estimates across 
proteomic, genomic, and osteological methods. All proteomic estimates were definitive in this study. For 
osteology, conditional estimates were assigned as either “probable”, or “possible”, with the latter having less 
certainty. DNA-based conditional estimates (“consistent with XX, but not XY” or, “consistent with XY, but not 
XX”) have 95% confidence intervals that cross thresholds for definitive XX or XY karyotype assignment.

RY RX Prot

Total consistent sex estimates

Oste 78% (18/22) 80% (20/25) 96% (27/28)

RY 98% (42/43) 84% (36/43)

RX 82% (41/50)

Inconsistent definitive sex estimates

Oste 0% (0/8) 0% (0/7) 0% (0/15)

RY 0% (0/18) 7% (2/27)

RX 0% (0/26)

Inconsistent conditional sex estimates

Oste 29% (4/14) 28% (5/18) 8% (1/13)

RY 4% (1/25) 31% (5/16)

RX 38% (9/24)
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Table 2.  List of sex estimations by increasing number of matched human DNA sequences. Conditional sex 
estimates are indicated with an asterisk. The archaeological sites Síi Túupentak and Rummey Ta Kuččuwiš 
Tiprectak are abbreviated as ST and RTKT.

Site and Burial N DNA seq Oste RY RX Prot

ST-30 0 Indet Indet Indet M

ST-38 0 Indet Indet Indet M

RTKT-5 202 M* Indet Indet M

RTKT-21 384 Indet Indet F* F

RTKT-4 602 M* Indet Indet M

RTKT-3 614 M* Indet F* M

RTKT-14 884 Indet Indet F* F

RTKT-22 1,499 M* Indet M* M

RTKT-7C 2036 Indet F* M* F

RTKT-8 2,249 Indet Indet M* M

ST-21 3,838 Indet F* F* M

ST-55 3,940 Indet F* F* F

ST-8 5,256 Indet M* M M

ST-5A 6,605 Indet F F* M

ST-49B 8,171 M M* M M

ST-31 8,491 F* F* F* F

ST-29 12,880 F* M* M* F

RTKT-12 16,208 Indet M* M M

ST-13 17,650 M M* M M

ST-35 19,768 M F* F* M

ST-58B 23,515 Indet F* F* F

ST-23 24,618 Indet F F* F

RTKT-19 33,738 Indet M* M M

ST-36 35,058 F M* M* F

ST-40 41,720 M Indet Indet M

ST-46 42,606 M Indet M* M

RTKT-23 42,930 F* F F* M

ST-51 45,661 M M M M

ST-27A 47,008 F F F* F

ST-47 56,495 M F* F* M

ST-10 66,934 M M M M

ST-5B 75,045 Indet Indet M M

ST-57A 88,870 F F F* F

RTKT-20 95,017 Indet F F F

ST-15 131,763 Indet M* M M

ST-44 136,755 M M M M

ST-26 140,759 Indet M* M M

ST-58A 174,112 F* F F* F

RTKT-7A 186,704 F* F F* F

ST-7 218,316 Indet M M M

RTKT-16 298,184 Indet F F* F

ST-32 311,636 Indet M M M

ST-12 577,053 M* M M M

ST-42 638,050 Indet M M M

ST-9 737,923 Indet M M M

RTKT-10 820,699 F* F F F

RTKT-17 964,774 Indet M M M

ST-52 1,052,930 M* M M M

ST-56 1,404,346 M* M M M

ST-6 1,581,177 F F F F

ST-62 6,376,553 Indet F F F

ST-63 10,796,470 Indet M M M

ST-53 22,121,564 F F F F

ST-54 24,679,707 Indet F F F

ST-48 39,132,506 F F F* F
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Sex estimation as a function of DNA quality. To evaluate the causes of inconsistent sex estimates, we 
plotted the  RY and  RX values as a function of the number of matched human sequences following the original 
down-sampled test plot in Skoglund et al.25 and indicated consistent, inconsistent and indeterminate sex estima-

Figure 2.  Consistency of sex estimation as a function of DNA data quality. Matching samples were processed 
for both proteomic and genomic sex estimation using the  RY (a) and  RX (b)  method25,27. In Figure 2a, genomic 
 RY ratios with 95% confidence intervals (plotted as error bars) are shown as a function of DNA quality (total 
DNA read number) following Skoglund et al. 2013. Genomic conditional estimates (“consistent with XX, but 
not XY” or, “consistent with XY, but not XX”) have 95% confidence intervals that cross thresholds for definitive 
XX or XY karyotype assignment. These thresholds are indicated on the chart with solid horizontal lines (male 
> 0.075, and female < 0.016). Indeterminate samples fall entirely between the two thresholds. In Figure 2b, 
genomic RX values are plotted in a similar manner though thresholds for males and females follow Mittnik 
et al.  201627 (male < 0.60 and female > 0.80). Black fill indicates genomic assignments that were consistent with 
proteomics, gray fill indicates estimates that conflicted with proteomics, and white fill indicates samples where 
genomic sex estimation was indeterminate.
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tion (Fig. 2a and b, Figure S1 and S2). It is apparent that all conflicting and indeterminate sex estimates occur 
below the minimum of 100,000 sequence reads mapping to the human genome recommended in Skoglund 
et al.25.

Listing all sex estimates by increasing number of total matched sequences shows a similar pattern for both 
the  RY and  RX methods (Table 2). Among the 55 common samples, the last conflict occurred just below 60,000 
sequence reads, and last indeterminate estimate at 75,000 sequence reads. Table 2 also shows no definitive 
genomic estimates at or below 1,000 sequence reads using the  RX method. In this study, the lowest number 
of matched sequences to yield a definitive sex estimate using the Rx method was 5,256 (Table 2). It is further 
apparent that conflicts below the 100,000-threshold occurred primarily among conditional sex-estimates. In 
fact, conditional DNA-based sex-estimates with less than 100,000 total sequences agreed with proteomics only 
about half of the time using  RX (9 of 20, 45%,) and 38% (5 of 14) of the time using  RY, suggesting that under these 
conditions DNA-based estimates were close to random. The  RY method also resulted in two conflicts among 
definitive estimates, both of which were below 100,000 reads.

The same is true for conflicts between osteological sex estimation and genomic sex estimates under 100,000 
sequence reads. While the numbers were smaller due to a higher indeterminate rate, 4 out of 7 and 5 out of 11 
conflicts were obtained with  RY and  RX methods respectively. In this case, osteological sex estimation included 
both conditional and definitive assignments.

It is important to point out that less than half of the 55 common samples met the 100,000 read threshold. 
Including the samples that failed for DNA reconstruction, only 21 of 55 common samples (38.1%) exceed the 
100,000 threshold. Though slightly higher, the proportion of samples exceeding 100,000 human genome sequence 
reads in the larger set of 99 skeletons sampled for DNA was also below 50% (42 of 99, 42.4%) (Table S1) indicat-
ing a representative sampling.

Sex estimation as a function of proteomic data quality. To evaluate whether low proteomic signals 
contributed to inconsistencies in sex estimates we compared where the conflicts occurred for normalized com-
bined intensities of amelogenin peptides (Table S3, Fig. 3a and b). These occurred mostly at mid- to high signal 
levels for AMELX and AMELY. Inconsistencies occurred between 1.43 × 109 and 9.11 × 109 CI/mg AMELX for  RY 
estimates (Fig. 3b) and between 1.54 × 109 and 9.11 × 109 CI/mg AMELX for  RX (Fig. 3b). Indeterminate DNA-
based estimates occurred across the range of proteomic amelogenin signals.

There were six conflicts where proteomic identifications were male and genomic estimates were female. With 
the  RX method, all of these conflicts occurred among conditional estimates, while three were conditional and two 
were definitive using the  RY method (Tables 1 and 2). Of the six conflicts, the lowest proteomic signal male that 
conflicted with DNA was CA-ALA-565/H, Burial 35 (Table S3). This sample had 11 peptides that were unique 
to the AMELY gene product (Figure. S3). To place this in context, male samples in the total burial cohort ranged 
from a low of six specific AMELY peptides (CA-ALA-565/H, Burial 63A) to a high of 251 specific AMELY pep-
tides (x ̄= 81, median = 37). All male assignments, by having multiple unique peptides, meet proteomic guidelines 
for publication of a detected protein and were considered  definitive63. All replicate amelogenin analyses were 
within an order of magnitude (Table S4) and only a single AMELX peptide spectrum was detected in a blank 
run (Table S5). No specific AMELY peptides were detected in any blanks.

Overall, there were three conflicts where proteomic sex estimation was female and genomic was male (CA-
ALA-704/H Burial 7C, CA-ALA-565/H Burials 29 and 36). In each of these cases the genomic assignments were 
conditionally male, while proteomics detected no AMELY peptides and had abundant AMELX peptides with 
relatively strong combined intensities corresponding to Pr(F) values of 0.95, 0.97 and 0.99 respectively (Table S3). 
The lowest AMELX signal sample (CA-ALA-565/H, Burial 62) had a proteomic female sex estimation with a 
Pr(F) value of 0.68. This was a repeat of an earlier sample that resulted in lower amelogenin yields and a Pr(F) 
value of 0.29, an indeterminate proteomic sex estimate. However, while this was the lowest proteomic signal it 
was supported by a definitive genomic female sex estimation with high quality DNA (total reads = 6.4 × 106). 
Data for all duplicate proteomic samples are listed in Table S4.

Relative preservation of amelogenin peptide and DNA signal quality. Since the efficacy of sex 
estimation is dependent on the quality of DNA and peptide signals, we compared matching signal types taken 
from each skeleton. Degradation of DNA and protein, particularly from the same sample, would be predicted 
to affect both signals and result in a positive relationship. Matching AMELX (CI/mg) was plotted as a function 
of matching total DNA reads (Fig. 4a). In order to accommodate the large range of signal, and allow variation 
to approximate a normal distribution, all values were transformed logarithmically prior to linear  regression64. 
No significant linear relationship between the variables was detected in spite of the high power of the sample 
(df = 51, p = 0.09). This result is consistent with other studies, although sampling from different skeletal locations 
may have introduced  variation42,65. Results of all statistical analyses can be found in supplemental materials.

Another approach is to compare the values of each variable as a function of archaeological age. With one 
exception (a more recent sample from CA-ALA-704/H), samples from the two sites fit into two discrete age cat-
egories. Late/Historic Period samples from CA-ALA-565/H span 600–100 cal BP, while EMT/Middle 1 Period 
samples from CA-ALA-704/H date between 2,240–1,610 cal BP (Fig. 4b). The range of signal for amelogenin 
peptides, which were transformed logarithmically using a base of 10, averaged 9.03 ± 0.56 orders of magnitude 
for the Late/Historic Period samples and 9.08 ± 0.63 for EMT/Middle Period samples. An independent t-test 
found no significant difference in AMELX signal between the two groups (two-tailed, df = 53, p = 0.78). This 
supports a stable proteomic signal over this timeframe (roughly 2,000 years) and is consistent with previously 
published  observations33.
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The same was not the case for DNA quality. The range of logarithmically transformed total DNA reads aver-
aged 5.13 ± 1.10 orders of magnitude for Late/Historic Period samples and 4.05 ± 1.25 orders of magnitude for 
EMT/Middle 1 Period samples, a reduction of about an order of magnitude in the older samples (Fig. 4c). An 
independent t-test found the difference between these two groups to be significant (2-tailed, df = 51, p = 0.002, 
Supplemental Material). These results support a working hypothesis of independent or orthogonal signals for 
ancient DNA and amelogenin protein. The practical result is that low signal DNA samples may have high 
amelogenin signals and vice versa, and that combining information from both DNA and proteomic methods 
will mutually support concurring estimates and correct for conflicting conditional estimates.

These data confirm the implications from the analysis of conflicting sex estimations described above. Conflict-
ing sex estimates started to become evident in samples with poorer quality DNA, below the threshold of 100,000 
reads (Fig. 2). No such pattern was clear when mapping conflicting sex estimates onto proteomic data. Conflicting 

Figure 3.  Consistency of sex estimation as a function of proteomic data quality. Matching samples were 
processed for both proteomic and genomic sex estimation using the  RY (a) and  RX (b)  method25,27. The 
cumulative ion intensity per mg enamel (CI/mg) for AMELY and AMELX peptides were plotted and 
consistency with both  RY and  RX sex estimates indicated. Agreements with DNA-based  RY estimates are 
indicated by black fill, conflicts are gray, and indeterminate genomic estimations are white.
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Figure 4.  Correlation of Amelogenin and DNA signal intensity. (a) Intensity of AMELX_HUMAN signal 
(CI/mg) as a function of the total number of matched human DNA sequence reads. (b) Intensity of AMELX_
HUMAN signal (CI/mg) as a function of the age of skeletal remains (cal BP), (c) The total number of matched 
human DNA sequences as a function of the age of skeletal remains (cal BP).
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sex estimates occurred across different proteomic data quality levels (Fig. 3). This is supported by finding that 
proteomic data quality is orthogonal to DNA data quality (Fig. 4A). Together these imply that conflicting sex 
estimates are due to poor quality DNA and not proteomic data. This is supported by the finding that proteomic 
data quality is more stable compared to DNA (Fig. 4b and c).

Discussion
To the best of our knowledge, this is the largest archaeological study to compare different molecular and osteo-
logical methods of sex estimation. Because analyses of shotgun-sequenced DNA (using both  RY and  RX methods), 
amelogenin protein, and osteological markers were made on the same set of individuals, matching datasets 
allowed us to make direct comparisons of the performance of the three techniques and develop a framework for 
managing inevitable conflicting sex estimates. When low values or confidence scores are obtained for any one 
method, the result can be compared to other methods and help determine the thresholds at which inconsistent 
sex estimation begin to occur.

Proteomics was the most sensitive method (i.e., provided estimates for the highest percentage of samples 
where all methods were applied), followed by genomic-based sex estimates, and osteology. Overall, there was 
a high amount of consistency between the different methods. We observed total agreement between the three 
methods where osteology had definitive sex estimates, when DNA had more than 100,000 total reads, and when 
 RX values resulted in definitive sex estimates.

Osteology offers a highly reliable, relatively fast means of estimating sex, although extensive training is 
required. Osteological methods are especially valuable as there are many contexts where molecular techniques 
cannot be applied due to cost and preference of the descendent community. However, as shown here, the osteo-
logical method is limited to adult skeletons with preserved sexually dimorphic markers, such as os coxae and 
crania. Nonetheless, it is highly reliable when preservation is good. All definitive osteological sex estimates con-
curred with definitive DNA and proteomic estimates. There were only four and five discrepancies, respectively, 
with conditional  RY- and  RX-based sex estimates, and just one of a total of twelve conditional osteological sex 
estimates disagreed with a proteomic sex estimate.

A strong benefit of high-throughput shotgun-sequenced DNA-based assignment of sex is that it can piggyback 
off of analyses performed for other reasons, such as information on the ancestry of an individual or evidence of 
 disease21,26,66–69. It can also be applied to a variety of human tissues, including bone, skin, hair, and teeth. This 
provides more flexibility than the analysis of amelogenin protein, which is restricted to tooth enamel.

Of the two DNA-based methods, the  RX ratio was more sensitive than the ratio based on sex chromosome 
reads  (RY) (Table 1), with more samples resulting in a sex estimate, although many of these additional estimates 
were conditional. For both of the DNA-based methods, conditional estimates had a high rate of inconsistency 
with proteomic and osteological sex estimates (Tables 1 and 2). Definitive  RX estimates were uniformly consist-
ent with osteological and proteomic sex estimates, while definitive  RY estimates produced two conflicts with 
proteomic sex estimation. Both of these conflicts occurred below 100,000 DNA sequence reads.

In this study, the limits of 100,000 total reads originally proposed in Skoglund et al.25 were supported by pro-
teomic sex estimates and osteological sex estimates. All conflicts with proteomic and osteological sex estimates 
occurred below this threshold. Thus, caution should be applied to genomic sex estimates when the total number 
of mapped human sequences is below 100,000. This is particularly so for conditional, or ‘consistent with. . .’, 
estimates, whether they are made using  RY or  RX criteria. While no definitive  RX sex estimates conflicted with 
proteomics or osteology, and no conditional estimates above 100,000 total reads conflicted, conditional estimates 
made on samples below 100,000 reads agreed with proteomics at a rate only slightly better than chance alone 
(5/14 for  RY and 9/20 for  RX). While the numbers were smaller the same phenomenon was observed for conflicts 
with osteological sex estimation.

Given that no definitive  RX sex estimates conflicted with proteomics or osteology, it may be possible to 
increase the total number of confident genomic sex estimates by combining definitive  RX estimates below 100,000 
reads with  RY or  RX estimates (definitive and conditional) that have more than 100,000 total matched human 
sequences. This would increase the number of confident genomic sex estimates by 16.4% (from 21 to 30 indi-
viduals). At what point definitive  RX estimates become less reliable, however, remains an open question. The 
much lower threshold of 1,000 reads originally proposed for the  RX  method27 could not be confirmed here as no 
definitive  RX sex estimates were obtained below about 5,000 reads.

Refinements in analysis of shotgun sequenced DNA could also increase confident genomic sex estimates. 
Researchers may conduct a detailed analysis of sex chromosome sequences to exclude homologous regions 
and provide a higher confidence of sex chromosome assignment. The use of targeted SNP data to conduct sex 
estimation helps in this regard. The resulting ratios of average sex chromosome to autosomal coverage based 
on X and Y rates may reduce chromosome miss-assignment and increase the signal separation between males 
and  females66,68,70. The use of SNP rates and affirmation or otherwise with proteomic sex estimation is the focus 
of additional study.

In contrast to other methods, sex estimation based on amelogenin proteins was more sensitive, with assign-
ments made on all samples, including those that failed for DNA sex estimation and samples from two cremated 
individuals (Table S1). All proteomic male sex estimates were based on confident assignments of multiple AMELY 
peptides and were considered  determinate62. Female assignments were more complex, but the calculated prob-
abilities of female sex (Pr(F)) were generally high and lower probabilities were corroborated with high quality 
DNA  data33.

Proteomic sex estimation exploits the fact that the highly characterized sex-chromosome-specific amelo-
genin gene family is expressed as proteins in the most robust tissue in the human body,  enamel33,34,37,58,71. The 
proteins are cleaved into peptides in situ, as part of enamel formation during tooth  biogenesis50,72,73. In order 
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to extract and analyze this peptide population, researchers need to demineralize the enamel and most use 
acid-based33–36,45,46,55,58,74 approaches. There are two analytical options: a targeted approach focused on a lim-
ited number of specific amelogenin  peptides34,36,54, or a shotgun proteomics approach that seeks to identify all 
proteins in the proteome and then selectively measure all amelogenin peptides bioinformatically after peptide 
spectral  matching35,45,46,54,55. This study takes the later  approach33. By comprehensively identifying and measur-
ing all unambiguous AMELX and AMELY peptides, the chromosome-specific signal is maximized. Stochastic 
effects that may result from any one peptide will be minimized. The approach is validated in this study by the 
high sensitivity of proteomic sex estimation, the stability of proteomic data over time, and the finding that there 
was no functional correlation between proteomic and genomic signals.

Because the amelogenin peptide signal appears to be independent from DNA-based sex estimation, con-
fident proteomic sex estimates can occur in samples with low or absent levels of DNA, and vice versa. In this 
study, amelogenin peptide signal remained stable over approximately 2,000 years while DNA levels significantly 
decreased in the older samples (Fig. 4b and c). Stability of the proteomic signal may be a function of competing 
factors. Amelogenin peptides adhere to the biomineral interface or are incorporated into the apatite matrix, 
reducing peptide flexibility and  reactivity33,75. Over time, proteins that are less incorporated in the mineral 
matrix, such as extracellular matrix proteins, will degrade at a faster rate resulting in a less complex proteome 
that is relatively enriched with amelogenin  peptides33,35. As a result, remaining amelogenin peptides are more 
likely to be targeted by the mass spectrometry instrument for fragmentation, increasing the cumulative signal.

The utility and complementarity of proteomic, genomic, and osteological techniques was related to differences 
in mortuary treatments and preservation encountered in this study. Proteomics was able to estimate sex in several 
cases where genomics failed, including skeletal remains from one cremation (CA-ALA-565/H, Burial 30). On 
the other hand, not all burials contained teeth with sufficient enamel, which precluded analysis of amelogenin 
protein. This was particularly true for cremated remains at CA-ALA-565/H, which were secondarily interred 
and formed a sizeable portion of the burial population (21%). Overall, it was possible for genomic sex estima-
tion to be attempted on a larger number of burials, even though proteomics had greater sensitivity. Combining 
proteomic, genomic, and osteological data produced highly comprehensive and confident sex estimations for 
the burial populations analyzed in this study. This allowed detailed male and female survival functions to be 
constructed, which enabled us to better detect sex-biased mortality patterns among the subadult population at 
CA-ALA-565/H. These sex-biased mortality patterns are the subject of a forthcoming paper. Future systematic 
comparisons are needed to understand the relative strengths of these molecular techniques with respect to vari-
ous mortuary treatments and over a wider range of environmental and temporal contexts.

Finally, and most importantly for the Muwekma Ohlone Tribe of the San Francisco Bay Area, accurate 
sex determination provides a greater perspective on the persona of each individual, rather than the nebulous 
"indeterminate" status of a person or child. Tribal members and representatives of the scientific community are 
collectively looking into the lives and tragedy of the death of people from the past. If it was not for their sacri-
fice, struggles, and commitment to their families, Muwekma Ohlone would not survive to this day. Today, the 
Muwekma Ohlone celebrate the lives of their ancestors by retelling some of their history and stories through 
archaeology, and ultimately honor them when they are returned to the warep (roughly translated as “the earth”), 
where their loved ones originally placed them with love and respect.

conclusions
A large-scale comparison of proteomic, genomic, and osteological methods of sex estimation provides a unique 
opportunity for contrasting the benefits and limits of each technique. We empirically demonstrate that the thresh-
olds of 100,000 total and 3,000 sex chromosome reads for genomic sex estimation is impactful; all conflicts occur 
below this threshold and no inconsistencies occur above it. In particular, conditional “consistent with . . .” esti-
mates below this threshold were effectively random with respect to proteomic and osteological determinations.

The study showed that osteological sex estimation is reliable (i.e., consistent with other techniques when 
sample signal is high), but has a high rate of indeterminate sex assignments when fragmentary and juvenile 
remains are assessed. Genomic methods help to extend sex estimation to many juvenile or fragmentary remains, 
but had a high rate of conflict with osteology or proteomic estimates for conditional sex assignments below the 
100,000 total mapped read threshold. In the event of a conflict in sex estimation, these conditional DNA-based 
estimates should be disregarded in favor of other methods. Proteomic sex estimation was the most sensitive 
technique, providing results in all remains tested, due in part to the stability of the amelogenin peptide signal, 
but was contingent upon the preservation of dentition associated with each burial. Conflicts between proteomic 
and DNA based estimates could be attributed to the different level of stability and signal variation between the 
two types of biomolecules. To obtain the greatest coverage and confidence in sex estimates among archaeological 
burial populations, proteomic approaches should be combined with osteological and genomic methods.

Methods
osteology. To estimate osteological sex, 20 unique traits were observed for each individual when present 
in a laboratory setting, and scored to indicate a prevalence of male or female for each trait (Table S6). These 20 
traits included nine that were observed on the os coxae (subpubic concavity, shape of pubis, ventral arc, doral 
pits, acetabulum size, greater sciatic notch, preauricular sulcus, auricular surface, and acetabulum dimensions), 
six on the cranium and mandible (nuchal crest, mastoid process, supraorbital margin, supraorbital ridge, mental 
eminence, and ascending ramus), and five that were quantitatively categorized for robusticity (glenoid fossa 
size, vertical diameter of humeral head, maximum width of humeral epicondyle, maximum diameter of femoral 
head, and maximum width of femoral bicondyle). All assessed traits have previously been shown to contribute to 
accurate sex  estimation16,76,77. Due to the complexity of human sexual dimorphism, the scores for these 20 traits 
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were then comprehensively evaluated relative to the local population to best determine the sex of the individuals 
(Table S6). In infants and children who died before puberty, current standard sexually dimorphic skeletal traits 
had not yet developed and could not be scored in this study.

Genomics. Whole genomic DNA extraction was conducted on a total of 99 ancient tooth and bone samples 
(71 individuals from CA-ALA-565/H, including seven samples that failed for reconstruction, and 28 individu-
als from CA-ALA-704/H; Table S2) following methods described in Cui et al.78. All genomic libraries exhibited 
expected DNA damage supporting the authentication of the DNA results. All ancient DNA laboratory work was 
conducted in a laboratory that is dedicated exclusively to studies involving ancient DNA at the Carl R. Woese 
Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC). All DNA extraction and 
genomic library preparation rounds included negative controls to account for DNA contamination. Libraries 
were constructed using the NEBNext Ultra II DNA Library Prep kit and NEBNext Multiplex Oligos (Unique 
Dual Indexes) for Illumina, and shotgun-sequenced on a HiSeq 4,000 platform at the UIUC Core Sequencing 
Facility.

Samples were de-multiplexed and trimmed to have a minimum sequence length of 25 bp using the program 
FastP v. 0.19.679, and DNA sequence reads were aligned to the human hg19 reference genome (GRCh37 – Gen-
bank accession number: GCA_000001405) using Burrows-Wheeler alignment in BWA v. 0. 7.1580. Aligned 
sequences were transformed to BAM format in SAMtools v. 1.181 and filtered to remove unmapped reads and 
reads with a quality score less than 30. PCR duplicates were marked and removed with the Picard Toolkit v. 
2.10.1 (“Picard Toolkit” 2019, Broad Institute), and index statistics for BAM files were generated using “idxstats” 
in  SAMtools81.  RY and  RX ratios were calculated following methods described in Skoglund et al.25 and Mittnik 
et al.27. Mapdamage 2.0 was used to check for DNA damage associated with ancient  DNA49.

proteomics. Amelogenin peptides were extracted and analyzed from the tooth enamel of 55 individuals 
(39 individuals from Síi Túupentak and 16 individuals from Rummey Ta Kuččuwiš Tiprectak; Table 2, S1 and 
S2). All surfaces and tools were thoroughly cleaned between samples and sample blanks were prepared with 
each batch. Washing runs with saw-tooth gradients on liquid chromatography were employed between each 
sample and periodic blank runs were used to monitor sample carryover. Proteomic methods followed those 
described in Parker et al.24 with the following changes. Mass spectrometry datasets (.RAW format) were pro-
cessed with PEAKS (10.0) peptide matching software (Bioinformatics Solutions Inc., Waterloo, ON). Error toler-
ance for matching peptide spectral assignment was set to 10 ppm for precursor mass and 0.04 Da for fragment 
ions. AMELX_HUMAN signals (CI/mg) were log transformed and then solved for Pr(F) using the equation 
Pr(F) = 1.0 + (0.059–1.0)/(1 + (x/7.54)13.99 where “x” is the logarithm (base 10) of the  AMELX_HUMAN24. Sam-
ples with a Pr(F) < 0.5 were considered indeterminate for proteomic sex estimation. Full details of the proteomic 
methods are provided in supplemental  information82–84.

Data availability
The mass spectrometry proteomics data, along with customized protein reference library, have been deposited 
to the ProteomeXchange Consortium via the PRIDE partner repository with the accession number PXD016076 
(https ://www.prote omexc hange .org85.
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